STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT – PHASE 1

DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT

Prepared by: PAULUS, SOKOLOWSKI & SARTOR

STORMWATER MANAGEMENT

1. Methodology

The proposed development of the site will involve the disturbance of more than 1-acre of land, therefore, the Phase II Stormwater regulations of the New York State Department of Environmental Conservation (NYSDEC) require that a State Pollutant Discharge Elimination System (SPDES) permit be obtained. Conformance with the guidelines of the SPDES permit requires that stormwater management practices be designed in accordance with the NYSDEC "Stormwater Management Design Manual" which require water quantity as well as water quality mitigation.

The primary objective of the Stormwater Management Plan is to improve water quality through capture and treatment of 90% of the annual stormwater runoff volume caused by increases in the impervious area of the site. To achieve this objective, a new stormwater collection system is proposed. The collection system will utilize inlets and piping to collect runoff and convey stormwater to water quality treatment units that will discharge treated stormwater into the Hudson River. Stormwater Quantity mitigation (i.e. detention) is not required since all stormwater runoff will be discharged directly into the Hudson River (designated as a 4th order stream or larger by NYSDEC).

The assessment of stormwater runoff has been based upon the Soil Conservation Service Method as described in Technical Release No. 55 (TR-55), "Urban Hydrology for Small Watersheds". Theoretical storms are modeled with the 24 Hour SCS Unit Dimensionless Hydrograph utilizing a Type III rainfall distribution and recurrence intervals of 2, 10, 25 and 100 years, shown on Table 1-1. Hydrograph generations and routings were accomplished via Intelisolve's Hydraflow 2005 Program. The program is tailored to model the SCS Method for hydrograph generations and to perform iterative solutions of the continuity equation (outflow=inflow +/- storage) with the intermediate values of the routing curve obtained through linear interpolation.

Table 1-1 Rainfall Volumes of Design Storms (per Westchester County									
Best Management Practices for Stormwater Management)									
Event (year)	2	10	25	100					
Rainfall (in)	3.3	5.0	5.7	7.2					

Storm sewers hydraulics have been based upon surface runoff generated by the 10 year storm event according to the General Permit for Construction Activities by NYSDEC for runoff conveyance systems in the closed storm drain system, and the Manning's Equation as defined in the "Handbook of Hydraulics" by Brater and King, sixth edition. The corresponding Manning's "n" value for HDPE pipe utilized in the design is 0.015.

2. Existing Site Conditions and Pre-Development Runoff Analysis

The existing project site is partially developed with a 1.70 -acre asphalt parking lot and asphalt access road. The remaining 3.89-acres of the site are currently vacant. The vacant areas of the property consist of natural vegetation along the shoreline and bare disturbed areas within the interior of the property that include stockpiles of building debris. The adjacent existing 0.65-acre sculpture park has been included in the drainage study area. The total study area including the park is 6.24-acres.

Existing drainage infrastructure on the project site is limited to two (2) catchbasins in the asphalt parking area, which convey stormwater through piping to a headwall structure along the shoreline of the Hudson River.

The topography of the site is flat with elevations ranging from 12 in the northeast to 8 in the southwest and divides the site into 2 drainage sub-areas. Hydrological soil classifications within the project site are predominantly Uf and Uc with the soil group designation of "C" based on Westchester County Soil Survey data. The majority of the site drains to the Hudson River (EX DA-A) and the balance of the site drains to the south east corner of the site onto the adjacent properties (EX DA-B). The pre-development drainage tributary areas including sub-watershed limits and flow paths are indicated on **Figure 1**.

The results of the 2, 10, 25 and 100-year routed hydrographs for pre development can be found in **Appendix A** and are summarized below in Table 2-1.

Table 2-1 - Existing Hydrologic Parameters & Flow											
Watershed	Drainage Area (Ac)	SCS Curve Number	Tc (Min.)	2-YR. (CFS)	10-YR. (CFS)	25-YR. (CFS)	100-YR. (CFS)				
EX DA - A	5.18	87	30.4	6.98	12.30	14.5	19.20				
EX DA – B	1.07	85	107.3	.65	1.19	1.41	1.90				

3. Proposed Site Development & Post-Development Runoff Analysis

The proposed development will introduce two (2) new buildings each with an attached multi-story parking structure, new roadways, parking areas and associated walkways. The existing asphalt parking area and roadway will be removed. Impervious coverage will increase to 4.27-acres while pervious coverage will decrease to 1.40-acres.

A new storm drainage system is proposed to collect runoff from the entire project site including building roofs, parking decks, access roadways, other paved surfaces and landscaped areas. The proposed system will include catchbasins, piping, headwalls and water quality treatment units. All of the stormwater collected will be piped to discharge to the Hudson River via three (3) headwall structures (1 existing and 2 new). The proposed plan divides the site into three (3) drainage sub-areas. Area PR DA-A (north end of site) will discharge at the existing headwall. While Area PR DA-B (central) and PR DA-C (south) will each discharge to new headwall structures. The post-development drainage tributary areas including sub-watershed limits and flow paths are indicated on **Figure 2**.

The results of the 2, 10, 25 and 100-year routed hydrographs for post development can be found in **Appendix B** and are summarized below. Water Quality Volume and Water Quality Flow calculations for each respective drainage area are included in **Appendix C**.

Table 3-1 - Proposed Hydrologic Parameters & Flow											
Watershed	Drainage Area (Ac)	SCS Curve Number	Tc (Min.)	2-YR. (CFS)	10-YR. (CFS)	25-YR. (CFS)	100- YR. (CFS)				
PR DA - A	0.77	98	10	1.79	2.73	3.11	3.94				
PR DA - B	2.53	88	19.7	3.99	6.89	8.08	10.64				
PR DA - C	2.36	94	11.8	5.07	8.04	9.25	11.82				

4. Soil Erosion and Sediment Control

The construction of the proposed development will require the excavation and grading of soils on site. The area of disturbance will include the majority of the site as well as the existing adjacent sculpture park.

During construction of the proposed development, temporary and permanent soil erosion and sediment control measures shall be implemented, to minimize impacts to the surrounding land areas and water bodies.

Soil erosion would be controlled by:

- Keeping disturbed areas to a minimum and providing temporary seeding and mulching if construction operations cease for more than 7 days;
- Keeping topsoil stockpiles less than 35 feet high and keeping the side slopes of these stockpiles at or less than 2:1;
- Constructing a crushed stone tracking pad at the points of egress and ingress for construction vehicles of each phase; and
- Placing stone rip-rap at the outlets of storm drainage pipe networks.

Sedimentation would be controlled by:

- Installing silt fence barriers along the base of slopes and around the perimeter of topsoil stockpiles;
- Placing inlet filters over the grate of each stormwater inlet or catch basin as it is constructed to prevent sedimentation within the storm sewer system;
- Cleaning inlet filters and the upstream sides of all silt fencing after

each erosion producing storm;

- Use of temporary sediment basins;
- Use of temporary division swales.

Soil erosion and sediment control shall be ensured during the construction period through a program of daily observation and maintenance with particular emphasis on inspection and repair following rain storms. All graded areas shall be permanently seeded and landscaped to minimize erosion. All control measures shall be carried out in accordance with NYSDEC Guidelines for Urban Erosion and Sediment Control.

The project has been designed to minimize any potential adverse impacts to surface waters.

5. Conclusion

The basic design criteria of proposed stormwater facilities, which are (A) to select feasible Storm Water Management, (B) to maximize pre-treatment and minimize collective impervious area, and (C) to limit any adverse hydrological and environmental impacts, have been applied to practices of this project.

As presented within this report, the runoff of stormwater in the post development condition is substantially improved in terms of quality and quantity control. The introduction of water quality treatment as well as managed landscaped areas as compared to pre development condition will have a positive effect on water quality and quantity control.

APPENDIX A

PRE-DEVELOPMENT DRAINAGE CALCULATIONS

Hyd. No. 1

EX. D.A. - A

<u>Description</u>	<u>A</u>	<u>B</u>	<u>B</u>			<u>Totals</u>	
Sheet Flow	0.011		0.011		0.011		
Flow length (ft)	= 0.011		265.0		0.011		
Two-year 24-br precip (in)	- 330 - 330		200.0		0.0		
Land slope (%)	= 0.12		0.02		0.00		
Travel Time (min)	= 1.57	+	16.16	+	0.00	=	17.73
Shallow Concentrated Flow							
Flow length (ft)	= 202.00		0.00		0.00		
Watercourse slope (%)	= 0.03		0.00		0.00		
Surface description	= Unpave	d	Paved		Paved		
Average velocity (ft/s)	= 0.27		0.00		0.00		
Travel Time (min)	= 12.65	+	0.00	+	0.00	=	12.65
Channel Flow							
X sectional flow area (sqft)	= 0.00		0.00		0.00		
Wetted perimeter (ft)	= 0.00		0.00		0.00		
Channel slope (%)	= 0.00		0.00		0.00		
Manning's n-value	= 0.015		0.015		0.015		
Velocity (ft/s)	= 0.00		0.00		0.00		
Flow length (ft)	= 0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							30.38 min

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 32.0 = 3.30 = 0.03		0.011 268.0 3.30 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 2.53	+	40.05	+	0.00	=	42.58
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 353.00 = 0.00 = Paved = 0.09 = 64.72		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00	_	64 72
	= 04.72	Ŧ	0.00	т	0.00	-	04.72
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	$\begin{array}{rcrr} = & 0.00 \\ = & 0.00 \\ = & 0.00 \\ = & 0.015 \\ = & 0.00 \\ = & 0.0 \end{array}$		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							107.30 min

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	6.98	5	740	38,851				FX. D.A A
2	SCS Runoff	0.65	5	790	7,228				EX. D.A B
					-,				
021	12006 o Dr		opmort	Model a		Dariad: 0	Voor	Thursday	Oct 10 2006 11:15 AM

03113006-c-Pre-Development Model.gpweturn Period: 2 Year

Thursday, Oct 19 2006, 11:15 AM

Hydraflow Hydrographs by Intelisolve

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX. D.A. - A

= SCS Runoff	Peak discharge	= 6.98 cfs
= 2 yrs	Time interval	= 5 min
= 5.18 ac	Curve number	= 87
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 30.38468 min
= 3.30 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 2 yrs = 5.18 ac = 0.0 % = TR55 = 3.30 in = 24 hrs	= SCS RunoffPeak discharge= 2 yrsTime interval= 5.18 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 3.30 inDistribution= 24 hrsShape factor

Hydrograph Volume = 38,851 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	12.30	5	740	69.173				EX. D.A A
2	SCS Runoff	1.19	5	790	13,208				EX. D.A B
		-			-,				
031	13006-c-Pr	e-Devel	opment	Model.g	p R eturn I	Period: 10) Year	Thursday,	Oct 19 2006, 11:15 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX. D.A. - A

Hydrograph type	= SCS Runoff	Peak discharge	= 12.30 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 5.18 ac	Curve number	= 87
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 30.38468 min
Total precip.	= 5.00 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 69,173 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	14.50	5	740	82.038				EX. D.A A
2	SCS Runoff	1.41	5	790	15,765				EX. D.A B
021	12006 o Dr		onmont		D.P. oturn	Dariad: 25	Voor	Thuraday	Oct 10 2006 11:16 AM

03113006-c-Pre-Development Model.gpReturn Period: 25 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX. D.A. - A

= SCS Runoff	Peak discharge	= 14.50 cfs
= 25 yrs	Time interval	= 5 min
= 5.18 ac	Curve number	= 87
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 30.38468 min
= 5.70 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	 SCS Runoff 25 yrs 5.18 ac 0.0 % TR55 5.70 in 24 hrs 	= SCS RunoffPeak discharge= 25 yrsTime interval= 5.18 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 5.70 inDistribution= 24 hrsShape factor

Hydrograph Volume = 82,038 cuft

Thursday, Oct 19 2006, 11:16 AM

6

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	19.20	5	740	110.002				EX. D.A A
2	SCS Runoff	1.90	5	785	21,348				EX. D.A B
031	13006-c-Pr	e-Devel	opment	Model.g	p R eturn I	Period: 10	00 Year	Thursday,	Oct 19 2006, 11:16 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX. D.A. - A

Hydrograph type	= SCS Runoff	Peak discharge	= 19.20 cfs
Storm frequency	= 100 yrs	Time interval	= 5 min
Drainage area	= 5.18 ac	Curve number	= 87
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 30.38468 min
Total precip.	= 7.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 110,002 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	6.98	5	740	38,851				FX. D.A A
2	SCS Runoff	0.65	5	790	7,228				EX. D.A B
					-,				
021	12006 o Dr		opmort	Model ~		Dariad: 0	Voor	Thursday	

03113006-c-Pre-Development Model.gpweturn Period: 2 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

EX. D.A. - B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.65 cfs
Storm frequency	= 2 yrs	Time interval	= 5 min
Drainage area	= 1.07 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 107.3 min
Total precip.	= 3.30 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 7,228 cuft

Thursday, Oct 19 2006, 11:19 AM

2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	12.30	5	740	69.173				EX. D.A A
2	SCS Runoff	1.19	5	790	13,208				EX. D.A B
031	13006-c-Pr	e-Devel	opment	Model.g	p R eturn I	Period: 10) Year	Thursday,	Oct 19 2006, 11:20 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

EX. D.A. - B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.19 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 1.07 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 107.3 min
Total precip.	= 5.00 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 13,208 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	14.50	5	740	82.038				EX. D.A A
2	SCS Runoff	1.41	5	790	15,765				EX. D.A B
004	12000 - D				Detroit 1			Theorem	

03113006-c-Pre-Development Model.gpreturn Period: 25 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

EX. D.A. - B

= SCS Runoff	Peak discharge	= 1.41 cfs
= 25 yrs	Time interval	= 5 min
= 1.07 ac	Curve number	= 85
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 107.3 min
= 5.70 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 25 yrs = 1.07 ac = 0.0 % = TR55 = 5.70 in = 24 hrs	= SCS RunoffPeak discharge= 25 yrsTime interval= 1.07 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 5.70 inDistribution= 24 hrsShape factor

Hydrograph Volume = 15,765 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	19.20	5	740	110.002				EX. D.A A
2	SCS Runoff	1.90	5	785	21,348				EX. D.A B
031	13006-c-Pr	e-Devel	opment	Model.g	p R eturn I	Period: 10	0 Year	Thursday,	Oct 19 2006, 11:20 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

EX. D.A. - B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.90 cfs
Storm frequency	= 100 yrs	Time interval	= 5 min
Drainage area	= 1.07 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 107.3 min
Total precip.	= 7.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 21,348 cuft

8

APPENDIX B

POST-DEVELOPMENT DRAINAGE CALCULATIONS

PROP D.A. - B

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow								
Manning's n-value	= 0.011		0.011		0.011			
Flow length (ft)	= 21.0		0.0		0.0			
Two-year 24-hr precip. (in)	= 3.30		0.00		0.00			
Land slope (%)	= 0.01		0.00		0.00			
Travel Time (min)	= 2.85	+	0.00	+	0.00	=	2.85	
Shallow Concentrated Flow								
Flow length (ft)	= 0.00		0.00		0.00			
Watercourse slope (%)	= 0.00		0.00		0.00			
Surface description	= Paved		Paved		Paved			
Average velocity (ft/s)	= 0.00		0.00		0.00			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Channel Flow								
X sectional flow area (sqft)	= 1.77		0.00		0.00			
Wetted perimeter (ft)	= 4.71		0.00		0.00			
Channel slope (%)	= 0.01		0.00		0.00			
Manning's n-value	= 0.011		0.015		0.015			
Velocity (ft/s)	= 0.70		0.00		0.00			
Flow length (ft)	= 711.0		0.0		0.0			
Travel Time (min)	= 16.85	+	0.00	+	0.00	=	16.85	
Total Travel Time, Tc							19.70 min	

PROP D.A. - C

<u>Description</u>	<u>A</u>	<u>A</u>			<u>C</u>		<u>Totals</u>		
Sheet Flow									
Manning's n-value	= 0.011		0.011		0.011				
Flow length (ft)	= 28.0		0.0		0.0				
I wo-year 24-hr precip. (in)	= 3.30		0.00		0.00				
Land slope (%)	= 0.03		0.00		0.00				
Travel Time (min)	= 2.31	+	0.00	+	0.00	=	2.31		
Shallow Concentrated Flow									
Flow length (ft)	= 0.00		0.00		0.00				
Watercourse slope (%)	= 0.00		0.00		0.00				
Surface description	= Paved		Paved		Paved				
Average velocity (ft/s)	= 0.00		0.00		0.00				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Channel Flow									
X sectional flow area (sqft)	= 1.77		0.00		0.00				
Wetted perimeter (ft)	= 4.71		0.00		0.00				
Channel slope (%)	= 0.01		0.00		0.00				
Manning's n-value	= 0.011		0.015		0.015				
Velocity (ft/s)	= 0.70		0.00		0.00				
Flow length (ft)	= 402.0		0.0		0.0				
Travel Time (min)	= 9.53	+	0.00	+	0.00	=	9.53		
Total Travel Time, Tc									

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	1.79	5	730	8,037				PROP D.A A
2	SCS Runoff	3.99	5	735	19,168				PROP D.A B
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
031	13006-c-Pc	st-Deve	elopmer	nt Model.	g p Rveturn	Period: 2	Year	Thursday	, Oct 19 2006, 11:26 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

PROP D.A. - A

Hydrograph type	= SCS Runoff	Peak discharge	= 1.79 cfs
Storm frequency	= 2 yrs	Time interval	= 5 min
Drainage area	= 0.77 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10 min
Total precip.	= 3.30 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 8,037 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	2.73	5	730	12,481				PROP D.A A
2	SCS Runoff	6.89	5	735	33,695				PROP D.A B
3	SCS Runoff	8.04	5	730	34,599				PROP D.A C
3	SCS Runoff	8.04	5	730	34,599				PROP D.A C
031	13006-c-Pc	st-Dove	lonmor		anDeratura	Dariad: 1(Voor	Thursday	Oct 10 2006 11.27 AM

03113006-c-Post-Development Model.gpweturn Period: 10 Year

i nursday, Oct 19 2006, 11:27 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

PROP D.A. - A

= SCS Runoff	Peak discharge	= 2.73 cfs
= 10 yrs	Time interval	= 5 min
= 0.77 ac	Curve number	= 98
= 0.0 %	Hydraulic length	= 0 ft
= USER	Time of conc. (Tc)	= 10 min
= 5.00 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 10 yrs = 0.77 ac = 0.0 % = USER = 5.00 in = 24 hrs	= SCS RunoffPeak discharge= 10 yrsTime interval= 0.77 acCurve number= 0.0 %Hydraulic length= USERTime of conc. (Tc)= 5.00 inDistribution= 24 hrsShape factor

Hydrograph Volume = 12,481 cuft

Thursday, Oct 19 2006, 11:27 AM

4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.11	5	730	14,313				PROP D.A A
2	SCS Runoff	8.08	5	735	39,835				PROP D.A B
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
021	12006 o Bo			t Model	anDeratura	Doriod: 24		Thursday	Oct 10 2006 11:27 AM

03113006-c-Post-Development Model.gp?veturn Period: 25 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

PROP D.A. - A

= SCS Runoff	Peak discharge	= 3.11 cfs
= 25 yrs	Time interval	= 5 min
= 0.77 ac	Curve number	= 98
= 0.0 %	Hydraulic length	= 0 ft
= USER	Time of conc. (Tc)	= 10 min
= 5.70 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	 SCS Runoff 25 yrs 0.77 ac 0.0 % USER 5.70 in 24 hrs 	= SCS RunoffPeak discharge= 25 yrsTime interval= 0.77 acCurve number= 0.0 %Hydraulic length= USERTime of conc. (Tc)= 5.70 inDistribution= 24 hrsShape factor

Hydrograph Volume = 14,313 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.94	5	730	18,240				PROP D.A A
2	SCS Runoff	10.64	5	735	53,156				PROP D.A B
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
031	13006-c-Pc	st-Deve	elopmer	nt Model.	gpRveturn∣	Period: 10	00 Year	Thursday	Oct 19 2006, 11:27 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

PROP D.A. - A

Hydrograph type	= SCS Runoff	Peak discharge	= 3.94 cfs
Storm frequency	= 100 yrs	Time interval	= 5 min
Drainage area	= 0.77 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10 min
Total precip.	= 7.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 18,240 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	1.79	5	730	8,037				PROP D.A A
2	SCS Runoff	3.99	5	735	19,168				PROP D.A B
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
031	⊥ 13006-c-Pc	st-Deve	elopmer	nt Model.	g pRve turn	Period: 2	Year	Thursday	, Oct 19 2006, 11:31 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

PROP D.A. - B

= SCS Runoff	Peak discharge	= 3.99 cfs
= 2 yrs	Time interval	= 5 min
= 2.53 ac	Curve number	= 88
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 19.70439 min
= 3.30 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 2 yrs = 2.53 ac = 0.0 % = TR55 = 3.30 in = 24 hrs	= SCS RunoffPeak discharge= 2 yrsTime interval= 2.53 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 3.30 inDistribution= 24 hrsShape factor

Hydrograph Volume = 19,168 cuft

2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	2.73	5	730	12,481				PROP D.A A
2	SCS Runoff	6.89	5	735	33,695				PROP D.A B
3	SCS Runoff	8.04	5	730	34,599				PROP D.A C
5		0.04		730	24,333				
031	13006-c-Pc	st-Deve	lonmer	nt Model	anRweturn	Period: 1() Year	Thursday	Oct 19 2006 11:31 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

PROP D.A. - B

Hydrograph type	= SCS Runoff	Peak discharge	= 6.89 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 2.53 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.70439 min
Total precip.	= 5.00 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 33,695 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.11	5	730	14,313				PROP D.A A
2	SCS Runoff	8.08	5	735	39,835				PROP D.A B
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
021	13006 c Pc			t Model	arProturo	Doriod: 26		Thursday	Oct 10 2006 11:21 AM

03113006-c-Post-Development Model.gpreturn Period: 25 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

PROP D.A. - B

Hydrograph type	= SCS Runoff	Peak discharge	= 8.08 cfs
Storm frequency	= 25 yrs	Time interval	= 5 min
Drainage area	= 2.53 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.70439 min
Total precip.	= 5.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 39,835 cuft

6

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.94	5	730	18,240				PROP D.A A
2	SCS Runoff	10.64	5	735	53,156				PROP D.A B
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
031	13006-c-Pc	st-Deve	elopmer	nt Model.	g p Rveturn	Period: 10	00 Year	Thursday	, Oct 19 2006, 11:31 AM

Hydraflow Hydrographs by Intelisolve

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

PROP D.A. - B

= SCS Runoff	Peak discharge	= 10.64 cfs
= 100 yrs	Time interval	= 5 min
= 2.53 ac	Curve number	= 88
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 19.70439 min
= 7.20 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 100 yrs = 2.53 ac = 0.0 % = TR55 = 7.20 in = 24 hrs	= SCS RunoffPeak discharge= 100 yrsTime interval= 2.53 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 7.20 inDistribution= 24 hrsShape factor

Hydrograph Volume = 53,156 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	1.79	5	730	8,037				PROP D.A A
2	SCS Runoff	3.99	5	735	19,168				PROP D.A B
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
3	SCS Runoff	5.07	5	730	21,211				PROP D.A C
031	13006-c-Pc	st-Deve	elopmer	nt Model.	g p rveturn	Period: 2	Year	Thursday,	Oct 19 2006, 11:35 AM

Hydraflow Hydrographs by Intelisolve

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

PROP D.A. - C

= SCS Runoff	Peak discharge	= 5.07 cfs
= 2 yrs	Time interval	= 5 min
= 2.36 ac	Curve number	= 94
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 11.84133 min
= 3.30 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 2 yrs = 2.36 ac = 0.0 % = TR55 = 3.30 in = 24 hrs	= SCS RunoffPeak discharge= 2 yrsTime interval= 2.36 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 3.30 inDistribution= 24 hrsShape factor

Hydrograph Volume = 21,211 cuft

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	2.73	5	730	12,481				PROP D.A A
2	SCS Runoff	6.89	5	735	33,695				PROP D.A B
3	SCS Runoff	8.04	5	730	34,599				PROP D.A C
3	SCS Runoff	8.04	5	730	34,599				PROP D.A C
031	02112006 a Bast Davelanment Medal arenturn Bariad: 10 Year Thursday, Oct 10 2006, 11:26 AM								Oct 10 2006 11:36 AM

03113006-c-Post-Development Model.gpweturn Period: 10 Year

i nursday, Oct 19 2006, 11:36 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

PROP D.A. - C

Hydrograph type	= SCS Runoff	Peak discharge	= 8.04 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 2.36 ac	Curve number	= 94
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.84133 min
Total precip.	= 5.00 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 34,599 cuft

4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.11	5	730	14,313				PROP D.A A
2	SCS Runoff	8.08	5	735	39,835				PROP D.A B
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
3	SCS Runoff	9.25	5	730	40,154				PROP D.A C
021	12006 o Bo			t Model	arProturo	Doriod: 26		Thursday	Oct 10 2006 11:26 AM

03113006-c-Post-Development Model.gp?veturn Period: 25 Year

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

PROP D.A. - C

Hydrograph type	= SCS Runoff	Peak discharge	= 9.25 cfs
Storm frequency	= 25 yrs	Time interval	= 5 min
Drainage area	= 2.36 ac	Curve number	= 94
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.84133 min
Total precip.	= 5.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 40,154 cuft

Thursday, Oct 19 2006, 11:36 AM

6

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.94	5	730	18,240				PROP D.A A
2	SCS Runoff	10.64	5	735	53,156				PROP D.A B
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
3	SCS Runoff	11.82	5	730	52,099				PROP D.A C
031	13006-c-Pc	st-Deve	elopmer	nt Model.	g p‰ eturn ∣	Period: 10)0 Year	Thursday,	Oct 19 2006, 11:36 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

PROP D.A. - C

Hydrograph type	= SCS Runoff	Peak discharge	= 11.82 cfs
Storm frequency	= 100 yrs	Time interval	= 5 min
Drainage area	= 2.36 ac	Curve number	= 94
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.84133 min
Total precip.	= 7.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Volume = 52,099 cuft

APPENDIX C

WATER QUALITY CALCULATIONS

PALISADES POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME CALCULATION

POST DEVELOPMENT DRAINAGE AREA "A"

DATA:		
Drainage Area, A =	0.77	ac
Rainfall, P=	1.20	in
Impervious %, I =	97	%

WQv = ((P) * (Rv) *(A)) / 12

WQv = water quality volume (acre-feet)

P = 90% rainfall event number (See Fig 4.1 in NYS Stomrwater Management Design Manual)

Rv = runoff volume = 0.05 + .009 (I), where I is the percent impervious cover

Rv = 0.05 + 0.009 (1)

Rv = 0.92

A = site area (acres)

WQv = P * Rv * A / 12

WQv	=	0.071	acre-feet
WQv	=	<u>3096</u>	<u>CF</u>
10% WQv	=	<u>310</u>	<u>CF</u>
25% WQv	=	<u>774</u>	<u>CF</u>
50% WQv	=	<u>1548</u>	<u>CF</u>
75% WQv	=	2322	CF

PALISADE POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME - PEAK FLOW CALCULATION

POST DEVELOMENT DRAINAGE AREA "A"

Qp = qu * A * WQv

qu = unit peak discharge (cfs/sq mi/inch)

A = drainage area (sq mi)

WQv = water quality volume (watershed inches)

CN = 1000/(10 + 5P + 10Q - 10(Q^2 + 1.25 QP)^0.5)

CN = adjuste	d curve	number
--------------	---------	--------

P = 90% rainfall event (inches)	=	1.20	in		
Q = runoff volume (inches)	=	WQv (af)	/	A (ac)	* 12
	=	0.071		0.77	* 12
	=	1.11		inches	

CN = 99

	tc =	10		min	=	0.17	hrs
	(la) =	0.041		(from T	able	4.1 TR	55)
	la/P =	0.03					
	qu =	580		From E	xibit	4-III TF	R 55)
Qp	=	qu	*	Ac	*	Q	
Qp	=	580	*	0.001	*	1.11	
Qp	=	0.77		cfs			

PALISADES POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME CALCULATION

POST DEVELOPMENT DRAINAGE AREA "B"

DATA: Drainage Area, A = 2.53 **ac** Rainfall, P= 1.20 **in** Impervious %, I = 65 %

WQv = ((P) * (Rv) * (A)) / 12

WQv = water quality volume (acre-feet)

P = 90% rainfall event number (See Fig 4.1 in NYS Stomrwater Management Design Manual)

Rv = runoff volume = 0.05 + .009 (I), where I is the percent impervious cover

Rv = 0.05 + 0.009 (I)

Rv = 0.64

A = site area (acres)

WQv = P * Rv * A / 12

WQv	=	0.161	acre-feet
WQv	=	<u>6998</u>	<u>CF</u>
10% WQv	=	700	<u>CF</u>
25% WQv	=	<u>1750</u>	<u>CF</u>
50% WQv	=	<u>3499</u>	<u>CF</u>
75% WQv	=	5249	CF

PALISADE POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME - PEAK FLOW CALCULATION

POST DEVELOMENT DRAINAGE AREA "B"

Qp = qu * A * WQv

qu = unit peak discharge (cfs/sq mi/inch)

A = drainage area (sq mi)

WQv = water quality volume (watershed inches)

CN = 1000/(10 + 5P + 10Q - 10(Q^2 + 1.25 QP)^0.5)

CN = ad	justed	curve	number
---------	--------	-------	--------

P = 90% rainfall event (inches)	=	1.20	in		
Q = runoff volume (inches)	=	WQv (af)	/	A (ac)	* 12
	=	0.161		2.53	* 12
	=	0.76		inches	

CN = 95

	tc =	19.7		min	=	0.33	hrs
	(la) =	0.105		(from T	able	4.1 TR	55)
	la/P =	0.09					
	qu =	475		From E	xibit	4-III TF	R 55)
Qp	=	qu	*	Ac	*	Q	
Qp	=	475	*	0.004	*	0.76	
Qp	=	1.43		cfs			

PALISADES POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME CALCULATION

POST DEVELOPMENT DRAINAGE AREA "C"

DATA:		
Drainage Area, A =	2.36	ac
Rainfall, P=	1.20	in
Impervious %, I =	79	%

WQv = ((P) * (Rv) *(A)) / 12

WQv = water quality volume (acre-feet)

P = 90% rainfall event number (See Fig 4.1 in NYS Stomrwater Management Design Manual)

Rv = runoff volume = 0.05 + .009 (I), where I is the percent impervious cover

Rv = 0.05 + 0.009 (I)

Rv = 0.76

A = site area (acres)

WQv = P * Rv * A / 12

WQv	=	0.180	acre-feet
WQv	=	7823	<u>CF</u>
10% WQv	=	<u>782</u>	<u>CF</u>
25% WQv	=	<u>1956</u>	<u>CF</u>
50% WQv	=	<u>3912</u>	<u>CF</u>
75% WQv	=	5867	CF

PALISADE POINT YONKERS, NEW YORK

Prepared by: PS & S Engineering Date: 10-18-06

WATER QUALITY VOLUME - PEAK FLOW CALCULATION

POST DEVELOMENT DRAINAGE AREA "C"

Qp = qu * A * WQv

qu = unit peak discharge (cfs/sq mi/inch)

A = drainage area (sq mi)

WQv = water quality volume (watershed inches)

CN = 1000/(10 + 5P + 10Q - 10(Q^2 + 1.25 QP)^0.5)

CN = ad	justed	curve	number
---------	--------	-------	--------

P = 90% rainfall event (inches)	=	1.20	in		
Q = runoff volume (inches)	=	WQv (af)	/	A (ac)	* 12
	=	0.180		2.36	* 12
	=	0.91		inches	

CN = 97

	tc =	11.84		min	=	0.20	hrs
	(la) =	0.062		(from Ta	able	4.1 TR	55)
	la/P =	0.05					
	qu =	560		From E	xibit	4-III TF	R 55)
Qp	=	qu	*	Ac	*	Q	
Qp	=	560	*	0.004	*	0.91	
Qp	=	1.89		cfs			

Chapter 4: Graphical Peak Discharge method

This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation—Hydrology" (SCS 1983). The peak discharge equation used is

$$q_p = q_u A_m Q F_p \qquad [Eq. 4-1]$$

where

 q_p = peak discharge (cfs);

- $q_u = unit peak discharge (csm/in);$
- $A_m = drainage area (mi²);$

Q = runoff (in); and

 F_p = pond and swamp adjustment factor.

The input requirements for the Graphical method are as follows: (1) T_c (hr), (2) drainage area (mi²), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T_c computation, an adjustment for pond and swamp areas is also needed.

Peak discharge computation

For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (I_a) from table 4-1. I_a/P is then computed.

If the computed I_a/P ratio is outside the range shown in exhibit 4 (4-1, 4-1A, 4-1I, and 4-111) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of I_a/P to CN and P.

Peak discharge per square mile per inch of runoff (q_u) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using T_c (chapter 3), rainfall distribution type, and I_a/P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table (alue). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method.

Figure 4-1 .- Variation of Ia/P for P and CN.

a rendes for fution curve humpe	Tal	ole	1-11	la valu	ies fo	r runoff	curve	'num	her
---------------------------------	-----	-----	------	---------	--------	----------	-------	------	-----

Curve number	I _a (in)	Curve number	I _a (in)	
40	3.000	70	0.857	
41	2.878	71	0.817	
42	2.762	72	0.778	
43	2.651	73	0.740	
44	2.545	74	0.703	
45	2.444	75	0.667	
46	2.348	76	0.632	
47	2.255	17	0.597	
48	2.167	78	0.564	
49	2.082	79	0.532	
50	2.000	80	0.500	
51	1.922	81	0.469	
52	1.846	82	0.439	
53	1.774	83	0.410	
54	1.704	84	0.381	
55	1.636	85	0.353	
56	1.571	86	0.326	
57	1.509	87	0.299	
58	1.448	88	0.273	
59	1.390	89	0.247	
60	1.333	90	0.222	
61	1.279	91	0.198	
62	1.226	<u>92</u>	0.174	
63	1.175	93	0.151	
64	1.125	.94	0.128	
65	1.077	95	0.105	
66	1.030	96	0.083	
67	0,985	97	0.062	
68	0.941	98	0.041	
69	0,899			

Exhibit 4-111: Unit peak discharge (q_u) for SCS type 111 rainfall distribution

(210-VI-TR-55, Second Ed., June 1986)

4-7